首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18394篇
  免费   4154篇
  国内免费   2309篇
化学   12079篇
晶体学   146篇
力学   1076篇
综合类   180篇
数学   4218篇
物理学   7158篇
  2024年   46篇
  2023年   289篇
  2022年   476篇
  2021年   705篇
  2020年   962篇
  2019年   787篇
  2018年   665篇
  2017年   706篇
  2016年   1091篇
  2015年   1014篇
  2014年   1197篇
  2013年   1831篇
  2012年   1239篇
  2011年   1332篇
  2010年   1158篇
  2009年   1241篇
  2008年   1297篇
  2007年   1367篇
  2006年   1150篇
  2005年   993篇
  2004年   889篇
  2003年   759篇
  2002年   535篇
  2001年   392篇
  2000年   356篇
  1999年   333篇
  1998年   276篇
  1997年   232篇
  1996年   167篇
  1995年   200篇
  1994年   147篇
  1993年   117篇
  1992年   107篇
  1991年   88篇
  1990年   75篇
  1989年   66篇
  1988年   71篇
  1987年   59篇
  1986年   44篇
  1985年   84篇
  1984年   57篇
  1983年   27篇
  1982年   38篇
  1981年   43篇
  1980年   29篇
  1979年   27篇
  1978年   20篇
  1977年   24篇
  1976年   10篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Recently, nonmetal doping has exhibited its great potential for boosting the hydrogen evolution reaction (HER) of transition-metal (TM)-based electrocatalysts. To this end, this work overviews the recent achievements made on the design and development of the nonmetal-doped TM-based electrocatalysts and their performance for the HER. It is also shown that by rationally doping nonmetal elements, the electronic structures of TM-based electrocatalysts can be effectively tuned and in turn the Gibbs free energy of the TM for adsorption of H* intermediates (ΔGH*) optimized, consequently enhancing the intrinsic activity of TM-based electrocatalysts. Notably, we highlight that concurrently doping two nonmetal elements can continuously and precisely regulate the electronic structures of the TM, thereby maximizing the activity for HER. Moreover, nonmetal doping also accounts for enhancing the physical properties of the TM (i.e. surface area). Therefore, nonmetal doping is a robust strategy for simultaneous regulation of the chemical and physical features of the TM.  相似文献   
42.
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI/AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.  相似文献   
43.
44.
H2 may be evolved biphasically using a polarised liquid|liquid interface, acting as a “proton pump”, in combination with organic soluble metallocenes as electron donors. Sustainable H2 production requires methodologies to recycle the oxidised donor. Herein, the photo-recycling of decamethylferrocenium cations (DcMFc+) using aqueous core-shell semiconductor CdSe@CdS nanoparticles is presented. Negative polarisation of the liquid|liquid interface is required to extract DcMFc+ to the aqueous phase. This facilitates the efficient capture of electrons by DcMFc+ on the surface of the photo-excited CdSe@CdS nanoparticles, with hydrophobic DcMFc subsequently partitioning back to the organic phase and resetting the system. TiO2 (P25) and CdSe semiconductor nanoparticles failed to recycle DcMFc+ due to their lower conduction band energy levels. During photo-recycling, CdS (on CdSe) may be self-oxidised and photo-corrode, instead of water acting as the hole scavenger.  相似文献   
45.
采用密度泛函理论B3LYP方法,研究了锡苯和铅苯的[2+2],[4+2]及[4+4]二聚反应的微观机理和势能剖面,考察了Sn(Pb)原子上的2,4,6-三甲基苯基(Mes)取代基对反应势能剖面的影响.研究结果表明,所有反应均为协同过程,且大多数情况下,2个C—Sn(Pb)键同步形成.[2+2]和[4+2]反应在热力学和动力学上均比相应的[4+4]反应容易进行,而[4+2]反应在动力学上比相应的[2+2]反应有利.Sn(Pb)原子上的Mes取代基在热力学和动力学上均不利于反应的进行.铅苯的动力学稳定性与锡苯相当,但其热力学稳定性高于锡苯.  相似文献   
46.
A study, involving kinetic measurements on the stopped‐flow and conventional UV/Vis timescales, ESI‐MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)3(py)3][PF6] ([ 1 ]PF6; acac=acetylacetonate, py=pyridine) with two RC?CR alkynes (R=CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(μ‐S)2 moiety of [ 1 ]+. The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition‐state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron‐withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.  相似文献   
47.
Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non‐enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2S/HS. environment, are characterized using computational chemistry. A bio‐inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non‐cyclical pathways, in which HSS. is generated in the final step instead of HS., show a markedly increased thermodynamic driving force (ca. 70 kJ mol?1) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.  相似文献   
48.
Five dispirocyclic λ35‐tetraphosphetes [{R2Si(NR1)(NR2)P2}2] (R1 = R2 and R1 ≠ R2) are easily prepared in almost quantitative yields via photolysis of the respective bis(trimethylsilyl)phosphanyldiazaphosphasiletidines with intense visible light. These deep‐yellow low‐coordinate phosphorus compounds can be considered as the first higher congeners of the well‐known cyclodiphosphazenes. The tetraphosphetes are remarkably stable in air and show unexpected molecular properties related to the unique bonding situation of the central four‐π‐electron four‐membered phosphorus ring. The extent of rhombic distortion of the central P4 ring is remarkable due to an unusually acute angle at the σ2‐phosphorus atoms. All of the P?P bonds are approximately equal in length. The distances are in the middle of the range given by phosphorus single and double bonds. The anisotropic absorption of visible light that can easily be observed in the case of the yellow/colorless dichroic crystals of [{Me2Si(NtBu)(NtBu)P2}2] and the exceptional 31P NMR chemical shift of the σ2‐phosphorus atoms are the most remarkable features of the λ35‐tetraphosphetes. In the case of [{Me2Si(NtBu)(NtBu)P2}2], the Hansen–Coppens multipole model is applied to extract the electron density from high‐resolution X‐ray diffraction data obtained at 100 K. Static deformation density and topological analysis reveal a unique bonding situation in the central unsaturated P4 fragment characterized by polar σ‐bonding, pronounced out‐of‐ring non‐bonding lone pair density on the σ2‐phosphorus atoms, and an additional non‐classical three‐center back‐bonding contribution.  相似文献   
49.
The acidity of protic cations and neutral molecules has been studied extensively in the gas phase, and the gas‐phase acidity has been established previously as a very useful measure of the intrinsic acidity of neutral and cationic compounds. However, no data for any anionic acids were available prior to this study. The protic anions [H(B12X12)]? (X=F, Cl, Br, I) are expected to be the most acidic anions known to date. Therefore, they were investigated in this study with respect to their ability to protonate neutral molecules in the gas phase by using a combination of mass spectrometry and quantum‐chemical calculations. For the first time it was shown that in the gas phase protic anions are also able to protonate neutral molecules and thus act as Brønsted acids. According to theoretical calculations, [H(B12I12)]? is the most acidic gas‐phase anion, whereas in actual protonation experiments [H(B12Cl12)]? is the most potent gas‐phase acidic anion for the protonation of neutral molecules. This discrepancy is explained by ion pairing and kinetic effects.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号